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A number of refinements have been incorporated in the vector method. The refinements 
include utilization of spin-adapted configurations, partitioning the steps in the calculation, 
and determining the connection of this spin-adapted vector method and standard con- 
figuration interaction techniques. To this end, the spin-adapted vector method can be used 
to generate an integral inverted formula tape commonly used by standard configuration 
interaction. Sample calculations on LiH are used to compare standard CI and the spin- 
adapted vector method. 

One method for determining accurate electronic structure information for atoms 
and molecules is the method of superposition of configurations; often called con- 
figuration interaction (CI). The wavefunction # is expanded as a linear combination 
of configurations, di : 

$ = c WA (1) 

The energies and expansion coefficients (Q’S) are determined by diagonalization of 
the Hamiltonian interaction matrix, 

Hc = AC, (2) 

where the matrix elements of H are computed using the Hamiltonian operator, 

The traditional approach for calculating eigenvalues and eigenvectors involves 
construction and subsequent diagonalization of the Hamiltonian matrix [l]. Recently, 
an alternative approach for determining the eigenvalue and eigenvectors was intro- 
duced. [2, 31. This technique, the vector method (VM), utilizes an iterative diagonali- 
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zation procedure involving a second-quantized form of the Hamiltonian operator 
for solving Eq. (2) directly. The new method was shown to have a number of desirable 
features; particularly impressive was the near-linear relationship between the number 
of Slater determinants (subelements of the configurations) and computer times. The 
method was more general than previously introduced direct methods [4] which were 
developed to describe very specific symmetries, configurations, and states. The early 
VM papers did point out a major disadvantage of the method; Slater determinants 
rather than configurations (spin eigenfunctions) were used. 

The purpose of this paper is to describe recent modifications of the vector method 
for direct utilization of the spin configurations. This spin-adapted vector method will 
be described, as will a number of the computational steps involved in its imple- 
mentation. 

THEORETICAL BACKGROUND 

The standard form of the nonrelativistic Hamitlonain operator is 

where Z, is the charge on atom A and i and j represent the electrons. The vector 
method uses a second-quantized or occupation number representation form of the 
Hamiltonian, 

where u, /?, 6, and y denote spin orbitals. The uk and dk+ are normal fermion anni- 
hilation and creation operators, respectively. Slater determinants 4, the expansion 
functions of the wavefunction, are very convenient because they can be expressed 
as a product of N single-particle operators 

fp9 = d{a(l) /3(2) ... w(N)) = u,+u8+ **- a,+ I o>, (6) 

where ] 0) is the vacuum state. The matrix elements in Eq. (5) are 

(43 I H I Y@ = (7) 

In the vector method, iterative diagonalization methods are used to solve the operator 
equation 

where a, is a column of expansions coefficients and 4 is a list of Slater determinants 
arranged in a row vector. Iterative diagonalization methods are ideally suited because 
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they can be applied to either matrices or operators. The diagonalization algorithm 
developed by Davidson [5] has proven to be very effective for the lowest few (5-10) 
eigenvalues, whereas the Lanczos [6] method is favored when larger (20-50) numbers 
or roots are required. 

The improvements proposed previously [3] included use of “spinless” two-body 
matrix elements and spineigenfunctions (rather than single Slater determinants). 
The Hamiltonian operator in Eq. (4) can be rewritten as 

(9) 

where 

(ij) = (i(i - I))$= + j, (10) 

and i,j, k, and I refer to space (spinless) orthonormal orbitals. The spin dependence 
is included in the operator 

(11) 

where p and q run over both spin projections (-&$). The two-body matrix elements 
take a more complicated form, 

Aijtl = (ij / H I kl) + (1 - &)(I - S,,)( ji 1 H 1 lkj 

- (1 - &)(ji 1 H jkl) - (1 - S,,)(ij j H 1 Ik), (12) 

where Eq. (7) is used to evaluate the components of Aiikl . This form of the 
Hamiltonian operator preserves operator hermiticity and reduces the number of two- 
body matrix elements and operators by approximately a factor of 16, a factor of 8 
coming from the spatial symmetry of the two-electron integral and a factor of 2 
from the spin integration. 

The list of Slater determinants can be partitioned by spatial orbital occupancy 
(electron configuration) which leads to increased efficiency, using the above form of 
the Hamiltonian. The Qijlil operator when operating on Slater determinants of one 
electron configuration will create Slater determinants of onZy one electron confi- 
guration. 

Another improvement, use of linear combinations of Slater determinants (in parti- 
cular spin eigenfunctions), will further increase computational efficiency. This increase 
is realized in two ways: first, the number of spin eigenfunctions is considerably less 
than the number of Slater determinants, and second, only wavefunctions of the desired 
spin symmetry are generated. Both effects reduce iterative diagonalization times which 
are proportional to the number (between N and N2) of nonzero matrix elements 
times the required number of eigenvalues. 
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Equation (8) can be rewritten as 

Ho,llrG = EWE, (13) 

where C, is a column of expansion coefficients and + is a row vector of linear com- 
binations of Slater determinants, I&, , i.e., 

(4~)~ = T w7L,. (14) 

For an approximate wavefunction +C, the energy is given by 

EQ = (+CQ / Ho, 1 'bc,>/('+c, 1 +Q), (15) 

H&C, = 9f + R (16) 

where f is a column vector of coefficients and R is a linear combination of Slater 
determinants not contained in 9 (or of combinations orthogonal to those in +). 
Thus calculation of the approximate energy depends only on +,, 

E, = C,+<(t 1 +>f = Co+f. (17) 

Although not a restriction, an obvious choice of the vector + would be the linear 
combinations which define orthonormal spin eigenfunctions (or a subset of them). 

COMPARISON WITH STANDARD CI TECHNIQUES 

One standard CI method for determining potential energy surfaces involves the 
use of a formula tape. For a fixed list of configurations, 9, the geometry-independent 
coefficients of the one- and two-electron integrals are determined, 

(18) 
abed 

The coefficients and symbolic representations of the one- and two-electron integrals, 
[ab I cd], are stored compactly. Calculations for different geometric arrangements 
of atoms involve multiplying the value of the integral with the appropriate coefficient 
and forming the Hamiltonian matrix which is subsequently diagonlized. One problem 
arises with this technique: when forming a matrix element of the Hamiltonian, the 
integrals must be randomly (and rapidly) accessed. Many calculations involve millions 
of integrals which tend to amplify this problem. Yoshimine [7] has developed a sort- 
merge technique for “inverting” the formula tape. This inverted form connects all 
references to a particular integral. An integral can then be added to all matrix elements 
simultaneously. Clearly, the elements of the Hamiltonian matrix must be randomly 
accessed. Yoshimine has solved this problem with a merge of partial sums. 

The spin-adapted vector method (SVM) is ideally suited for generating an 
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“inverted” formula tape by noting that the operator Qijkl associated with the Aijkl 
integral determines the coefficients to multiply each configuration in Eq. (16). That is, 

(19) 

Hence (C,), Aijkl contributes to (f), only if the k, 1 orbitals are occupied in $* and the 
i, ,j orbitals are occupied in #2, (or vice versa). One important feature of SVM should 
be noted, the Hamiltonian matrix need not be accumulated if the operator form 
is used. 

From the above discussion the equivalence of the standard CI (formation of 
Hamiltonian matrix) and the SVM is obvious because 

and 

where the prime on the sum indicates that i, j involves only occupied orbitals in $p 
and that k, I involves only occupied orbitals in I/I,. Thus, the SVM method can be 
used to generate directly the “inverted” formula tape used by the standard matrix 
diagonalization CI methods. (i.e., conventional formula tape contains ( p 1 Qijkr 1 q) 
sorted on pq, “inverted” is sorted on ijkl.) 

COMPUTATIONAL IMPLEMENTATION OF THE SVM 

The improvements described above have been incorporated in a new section in the 
Livermore SCREEPER code. This code has been used extensively for calculating ab 
initio potential energy surfaces for small polyatomic molecules. Determination of 
potential energy surfaces requires hundreds to thousands of individual CI calculations, 
thus a SVM formula tape technique has been developed. 

For all unique orbital (spatial) indices 

where Vijrl is a matrix which is very sparse if ij # kl. It can be stored compactly as 
a formula tape. The remaining operators generate a very dense matrix 

Qijijllr = +Vijij ; (23) 
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however, combinations of these matrix elements are identically the diagonal spin 
blocks of the Hamiltonian matrix, 

where 

C AiiijQijij+ = 9B, (24) 
ij 

0% = (91, I Ho, I 44, 

0%~ = 0, k # I. 
(25) 

Here & is small row vector of spin couplings for one electron configuration. 
These matrix elements require a number of two electron matrix elements and 

geometry independent coefficients 

(B)kk = 1 aij(ij I H I !j> + b&ij I H l.ii>. (26) 
ii 

The formulas for B are not saved but rather the numerical values are computed for 
each geometry. This is possible because there are only N matrix elements (N is the 
number of configurations) and the number of unique integrals is roughly 212~ (n is 
the number of space orbitals). 

A calculation on a particular molecular system proceeds in two steps. The geometry 
independent “formula tape” is first generated. For each unique Qijlcl , corresponding 
to a nonzero Aiikl, the Vijkl matrix is determined. The nonzero blocks of Vijkl can 
be determined by noting which electron-configuration spin-coupling block in the 
original configuration list can be generated from another electron configuration 
by replacement of space orbitals I, k by space orbitals i, k, e.g., 

Qm& + +, . (27) 

Then for each pair of blocks of configurations (+P, (L,) giving a nonzero Aiikl , the 
Vijkl matrix is determined by representing the spin eigenfunctions as linear 
combinations of Slater determinants. In practice, since Slater determinants are the 
natural basis set for the annihilation and creation operations, all operations involving 
Qiikl are carried out on the Slater determinants followed by a transformation to the 
space defined by the spin eigenfunctions. The nonzero Vijkl matrix elements are 
stored compactly for later use. 

During the geometry-dependent portion of the calculation the two-body matrix 
elements, A<jki , are computed. The B matrix is computed using the Qiiij operator 
and the small set of Aijii integrals. An “operator tape” is constructed by merging the 
numerical values of Aijkl with the corresponding Vijlcl matrices. Two options then exist, 
the Hamiltonian matrix can be constructed by accumulating partial sums followed 
by matrix diagonalization, or the operator form of the eigenvalue problem can be 
solved directly. As will be seen later, if a number of eigenvalues are required, formation 
of the Hamiltonian matrix reduces computer time for eigenvalue extraction. This is 
because the sparse Hamiltonian matrix can be stored more compactly than the for- 
mulas. 
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SAMPLE CALCULATION 

For the purpose of checking and timing, a calculation on LiH described in earlier 
studies [3, 81 has been repeated. Four wavefunctions were constructed, the SCF 
function 

*SCp = la22d (2% 

plus (1) all single and double excitations from the 20 orbital, (2) all single and double 
excitations from both la and 20, (3) the previous (2) plus triple excitations of lo 
and 20, and (4) full configuration interaction. Table I gives the number of electron 
conl?gurations (Space), the number of spin eigenfunctions (Spin), and the number of 
Slater determinants (SD). One of the motivations for moving to the spin-adapted 
vector method is observed; as the number of unpaired electrons (related to the 
excitation level) grows, the number of Slater determinants grows much faster than 
the number of spin and space configurations. The number of terms vary over two 
orders of magnitude and should give reasonable timing comparisons. 

TABLE1 

Numbers of Terms in Example Calculation 

Wavefunction’ Space Spin SD 

1 48 48 82 

2 135 162 357 

3 457 638 1611 

4 1002 1353 3033 

a See text for description of wavefunction. 

Computer times for standard configuration interaction (CI), the vector method 
(VM), and the spin-adapted vector method (SVM) are compared in Table II. For 
standard CI and VM, times are given for generation of the formula tape and extraction 
of the lowest eigenvalue (diagonalization). Timing for SVM is given for generation 
of the formula tape (Vii&, generation of the B matrix and insertion of the numerical 
matrix elements (prepare), direct diagonalization, and formation of the Hamiltonian 
matrix, followed by diagonalization. 

Comparing formula tape generation times, VM appears considerably faster, 
followed by SVM. This comparison is not completely legitimate since the VM formula 
tape involves geometry-dependent information which must be regenerated for 
each geometry. In addition, the VM code was carefully optimized [9]. Clearly, the 
SVM formula tape generation is superior to the standard CI. It should be noted that 
the CI formula tape generation used in this analysis did not involve inversion which 
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TABLE 11 

Timing for Various Methods (in CDC 7600 set) 

1 2 3 4 

Standard CI 
Formula 1.3 7.9 86.3 278.1 
Diagonalize (extract lowest root) 0.5 1.2 8.4 19.2 

Vector method 
Formula 
Diagonalize 

Spin adapted 
Formula 
Prepare 
Diagonalize 
Form Matrix 
Diagonalize 

1.5 6.2 33.1 78.1 
0.4 1.4 6.2 13.1 

0.9 5.4 42.0 117.8 
0.3 0.5 1.3 2.0 
0.4 1.6 11.6 27.1 
0.1 0.4 3.4 10.1 
0.2 0.8 9.9 16.3 

would have further increased the generation time, but presumably decreased the H 
formation time. 

Variation in diagonalization times reflect slightly different algorithms and con- 
vergence criteria. For this comparison the first, second, and fourth diagonalization 
times are equivalent. As noted earlier, diagonalization using the operator form is 
somewhat slower (roughly a factor of 2) than diagonalization of the matrix. It appears 
from Table II that the operator form should be used if only the lowest eigenvalue 
is required; however, if a number of eigenvalues are required the matrix should be 
formed for subsequent diagonalization. 

CONCLUSION 

Theoretical and computation improvements in the recently developed vector 
method have lead to the spin-adapted vector method. Calculations on numerous 
polyatomic systems indicate SVM can be used to generate an inverted formula tap 
directly and considerably faster than standard CI methods. The operator form can be 
used directly to extract the lowest eigenvalue or higher eigenvalues if storage 
limitations prevent formation of the Hamiltonian matrix (e.g., minicomputer facilities). 
lmprovements in iterative diagonalization and formula tape storage may lead to 
further increased efficiencies. 
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